
that the peaks of the curves emerge into a certain steady level. Thus, from the results of 
a numerical experiment it follows that the temperature field in the chamber wall after five 
to six material treatment cycles almost emerges into a steady periodic regime. A periodic 
thermal regime for the chamber walls is most critical, and therefore it is necessary to use 
this regime in evaluating thermoelastic stresses in the chamber walls. In addition, the max- 
imum temperature of the internal chamber wall should not exceed the ignition temperature of 
the gas mixture for deburring. 

i. 
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NUMERICAL CALCULATION OF THERMOELASTIC STRESSES IN CHAMBERS FOR 

DETONATING A GAS MIXTURE 

P. L. Abiduev and V. I. Manzhalei UDC 539.3.01 

With detonation of a gas mixture in a chamber as a result of induced detonation product 
convection, caused by a shock wave, the thermal flow towards the walls of the chamber is de- 
scribed by a rapidly decreasing time function so that the maximum temperature at the internal 
surface of a chamber with a size of the order of ~0.4 m is reached in a time ~10 -2 sec. This 
time in order of value is the same as the typical time for the decrease in thermal flow or 
shock-wave attenuation [i]. In time t 0 ~ 10 -2 sec a layer of metal with thickness 6 = 

/4a~0 z 10-3-3.10 -3 m (~ is thermal diffusivity) is heated [2], and the thickness of the 
chamber wall is normally several centimeters. Simple estimates of circumferential stresses 
in the internal surface of a steel chamber according to data in [2] with detonation of a pro- 
pane-oxygen mixture C3H s + 1002 with initial pressure P0 = 0.8 MPa are as follows: thermal 
stresses o t = EI~IAT z 1330 MPa, elastic static stresses as a result of gas pressure with in- 
stantaneous combustion Oy = (Pr0)/H ~ 40 MPa (P is pressure at the internal surface), dynamic 
stresses taking account of the reflection of detonation waves o d m 10Oy = 400 MPa. Here it 

assumed that E 1 = 21.104 MPa, ~i = 12.1"10-6 deg -l, AT = 524 deg, r 0 = 0.16 m, H = 0.04 m 
(E l is elasticity modulus, ~ is linear expansion coefficient, AT is the increase in temper- 
ature over the initial temperature, r 0 is chamber internal radius, H is thickness). These 
estimates show that in chambers for treating materials by gas detonation thermal stresses o t 
in the surface layer are the main factor in failure. For this reason there is specific in- 
terest in accurate calculation of the thermal stress fields in the walls of a chamber using 
the distribution of temperature fields obtained in [3]. 

The aim of the present work is numerical calculation of the thermoelastic stress fields 
in the chamber walls and then on the basis of the calculation, recommendation of some simple 
approximate approach for estimating the maximum thermal stresses. In the last case the peri- 
odicity of thermal flow at the internal surface is considered. 

i. Pressure at the Internal Surface Required in Order to Calculate Thermal Stresses. 
The pressure of gas mixture detonation products within the chamber in relation to time may 
be found by proceeding from an equation of state for an ideal gas 

P(~) = (pRT(~))/~ (l.1) 

(P, p, R, D, T are pressure, gas density, gas constant, molecular weight, and gas tempera- 
ture). The change in gas temperature with time in the chamber is determined from the first 
rule of thermodynamics 
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dU = cv(T)dT ( 1 . 2 )  

(U is internal energy, c V is heat capacity of the gas with constant volume). On the other 
hand, a change in the total internal energy for the gas in a unit of time may be presented 
as 

d U  = Q(~)Sd~, (1.3) 

where S is total internal surface of the chamber; �9 is current time; thermal flow [2] Q(x) = 

Q1exp(-kv~-~) + Qiexp(-$T); QI, Qi, $, k are some constants depending on the geometric dimen- 
sions of the chamber and the gas mixture composition and initial pressure. 

Relationships c V = cv(T) found approximately are provided in [4]. By solving set of 
Eqs. (1.2) and (1.3) it is possible to determine the relationship T = T(~) and then from (1.1) 
to determine P = P(x). With a sufficient degree of accuracy for our purposes the relation- 
ship c V = cV(T) from [4] is approximated by a cubic parabola 

cv(T) = ~T3 @ Cv~ (1.4) 

(~ is some constant, cv0 is gas heat capacity with 'instantaneous' combustion which is found 
for each gas mixture independently). We obtain constant y from an additional approximate 
equality which expresses conservation of energy: U z mQc (m is mass, Qc is specific heat of 
combustion of the gas mixture). As a result of approximation (1.4) the procedure is consid- 
erably simplified for determining the relationship c V = cv(T). Shown in Fig. i is the depen- 
dence of pressure P(~) on time. The broken line corresponds to approximation (1.4), and the 
solid line corresponds to the relationship c V = cv(T) from [4]. In numerical calculations 
the following values of constants are taken: QI = 3.65"107 W/mi, Q2 = 3.66"107 W/mi, k = 

3.36 sec -~ ~ = 41 4 sec -I . , p = 11.16 kg/m 3, R = 8.314 J(kg.deg), ~ = 0.034 kg/mole, m = 

0.343 kg, Oc = 1.1"107 J/kg, cv0 = 147.5 J/deg. 

2. Numerical Calculation of Thermoelastic Stresses in the Chamber Walls. In numerical 
calculation the chamber is considered as a finite two-layer cylinder with presence of thermal 
protection (thin internal layer of a material with high thermal conductivity) or a single 
layer cylinder with absence of it. It is assumed that pressure at the internal surface is 
uniform over the chamber length. The external surface of the cylinder is assumed to be free 
from loads, and the ends are restrained. Calculation of the stress-strain state (SSS) of a 
finite two-layer cylinder is performed within the scope of linear two-dimensional unconnected 
axisymmetrical thermoelasticity theory by the finite element method using a computation pro- 
gram [5] modified for calculating thermoelastic stresses. As the temperature field in the 
problem use is made of that obtained in [3] and which relates to heating of the chamber walls 
with the first initiation of gas detonation. Parameters for copper and steel are taken as 
those for parameters of the internal and external layers of the cylinder in the calculation, 
respectively. Here the following constants are taken: E I = 13.4"104 MPa, E 2 = 21"104 MPa, 
~z = 0.368, ~2 = 0.27, ~i = 1.66"I0-5 deg -I, ~2 = 1.13"i0-5 deg -i, r0 = 0.16 m, Rz = 0.164 m, 
R2 = 0.2 m, L = 0.48 m. 

Thus, the following equations of motion are integrated numerically: 

~i(Aui  - -  uJr  2) + (;~ 4- ,ul)(Oev/Or) = [3iOt/Or, 

~iAwl + ()~i 47 ~i)(Oe/Or) = ~iOt/Or, i = 1, 2 
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with boundary conditions 

r = ro: ( a ~ ) l  = ~l(Oul/Oz -~- Owl~Or) = O, 

(Or ) l  ---- ~ l e l  -~- 2p.lOWl/Or - -  [31t(ro, ~) = P( 'O,  

r = R 2 : ( % . z ) 2  = ~t,z(Ou.2/Oz + cgwJOr) = O, 

(a~)2 : L~eo. + 2p~Ow2/Or - -  ~2To : 0 

and conditions at the layer interface 

r = R ~ :  (~)~ = (~)~,  ( ~ ) ,  = (z~z)~, 

Ul  ~--" ~2~ U)I = W2" 

Restraint conditions are fulfilled at the chamber ends 

z = O: ui(r ,  O) = w~(r, O) = O, 

z = L:  ui (r ,  L )  = wi(r ,  L)  = O. 

Here (Or)i, (Orz) i are radial and tangential stresses; hi, Pi, ~i are Lame parameters and 
linear thermal expansion coefficients; $i = (3~i + 2Di)~i; ei = 8ui/Sr + ui/r + 8wi/Sz; ui, 
w i are radial and axial displacements; T O is initial temperature; L is chamber length; A = 
82/8r2 + (i/r)(8/Sr) + 8/8z; r0, R2 are internal and external chamber radii; R l is layer in- 
terface radius. 

In view of symmetry for the problem half of the cylinder is considered (0 5 z 5 L/2, 
r o ~ r ~ R2). This region is approximated by 200 eight-node isoparametric axisymmetrical 
finite elements (there are ten elements through the thickness, five elements in the internal 
layer, and twenty elements over the cylinder length). The grid selected appeared to be the 
optimum in the sense that computation experiments for a finer grid did not give a marked 
change in the SSS picture. 

In the computation program [5] stresses were determined at nodes of Gaussian integra- 
tion located at certain distances from the boundary of an element in relation to the order 
of integration adopted. In this work stresses through the chamber thickness were derived as 
four different points (two points in each layer) closest to the contact and outer surfaces. 
Therefore, in the future we shall use the term 'close to the surface' meaning in fact these 
nodes. Stresses were derived in two sections over the chamber length: close to the end and 
at the center. Calculation was also carried out for the case of a single-layer chamber (ab- 
sence of thermal protection). 

As might be expected, in the center of the chamber (z = L/2) the thermoelastic stress 
field is almost indistinguishable from the corresponding stress fields in an infinite cylin- 
der. Thermoelastic stress fields in an infinite two-layer cylinder may be obtained compara- 
tively easily, for example, by using the generalized functions method [6, 7]. Presented in 
Figs. 2 and 3 are the distributions of circumferential stresses o 0 through the thickness in 
the center of single- and two-layer chambers at different instants of time. Curves l-B re- 
late to T = 0.25; 0.6; 0.95 sec. In a single-layer chamber made of steel in the first in- 
stants of time in the internal surface layer there is a very high stress gradient. For a 
two-layer chamber this value is comparatively small, and circumferential stresses experience 
a jump at the contact boundary. 

Shown in Fig. 4 is the dependence of thermoelastic stresses o 0 on time at the internal 
surface of the chamber. The time interval in question is 1 sec. Curves 1 and 3 relate to 
single-layer chambers made of copper and steel, 2 relates to a two-layer chamber, and 4 and 5 
relate to approximate determination of stresses (see below). As can be seen from Fig. 4, 
with presence of thermal protection there is a marked reduction in maximum values of thermo- 
elastic stresses. However, the ratio of circumferential thermoelastic stresses o e at the 
internal surface to the corresponding yield strengths o, (for steel and copper o, = 430 and 
68.5 MPa) for steel single- and two-layer chambers they appeared to be o8/o , = 10-12, o~/o, = 
4-5. Therefore, the function of the thermal protection consists as follows from our calcu- 
lations and estimates in a reduction of thermoelastic stresses in the steel layer at the 
boundary with the copper (cracks which arise in the copper as a result of plastic flow do not 
penetrate into the steel with heating and cooling of the layer). These stresses in a steel 
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layer are reduced by approximately a factor of three (see Figs. 2 and 3) compared with ther- 
moelastic stresses at the surface of a single-layer chamber and the ratio o8/o , appears to 
be 1-1.5; it is apparent that an increase in the thickness of thermal protection may reduce 
it to a value lower than one. 

Close to the chamber ends the maximum circumferential stresses exceed in absolute value 
axial stresses in the center of the chamber. Shown in Fig. 5 are curves for circumferential 
thermoelastic stresses close to the ends of a two-layer chamber in relation to time at the 
four points through the thickness described above. Curve 1 relates to circumferential 
stresses close to the internal surface, 2 close to the contact surface from the direction of 
the internal layer, 3 from the direction of the external layer, and 4 close to the external 
surface. It is noted that for a two-layer chamber compared with a single-layer chamber there 
is a marked increase in the time for which stress reaches the maximum value. Maximum values 
of circumferential thermoelastic stresses close to the ends as a result of the edge effect 
exceed similar stress values in the center of the chamber by about a factor of 1.5. 

In view of the linearity of the problem thermoelastic stresses may be presented as super- 
position of elastic and thermal stresses. It emerges from the numerical calculations pro- 
vided that thermal stresses make a specific contribution to the chamber wall SSS. For cir- 
cumferential elastic stresses in the center of a single-layer chamber the following equation 
is valid as(r) = P(~)((R 2 + r2)r02)/((R 2 - r02)r2). The maximum pressure at the internal 
surface determined in part 1 is ~i0 MPa (see Fig. i). The circumferential elastic stresses 
at the internal surface os(r 0) = 45.5 MPa. It can be seen from comparison with the maximum 
values of thermoelastic stresses which are ~I000 MPa that the contribution of elastic stresses 
to the SSS is very small. 

3. Approximate Equgtions for Thermal Stresses. From the point of view of practice it 
is very important to evaluate the maximum thermal stresses in the chamber wall, At the cen- 
ter of the chamber the stress field is almost indistinguishable from the corresponding stress 
fields in an infinite cylinder. This situation makes it possible to evaluate the maximum 
stresses in terms of an expression for stresses in an infinite cylinder. 

For a uniform cylinder approximate expressions for circumferential thermal stresses used 
with relatively short times may be obtained by following [8]. Omitting the computations, the 
final expressions for stresses at the internal surface are written in the form 
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~IE~ ( a 2% [Q1_~_2(1_  
~o (ro, x) = t --  vl l - -  t (ro. z) +, ~ R~ _ r~ ~ ( 3 . 1 )  

- - e x p ( . k V ~ ) ( l + k ~ f x ) ) + O ~ + ( l - - e x p ( - - ~ . ) ) ] } ,  

where Iz, v z are thermal conductivity coefficient and Poisson's ratio; t(r0, T) is tempera- 
ture at the internal surface. With short times by ignoring the second term we obtain 

oo(ro, ~ ) = - - ~ l E l t ( r o ,  ~ ) / ( t -  vl). ( 3 . 2 )  

It is evident that for quite thick-walled cylinders the second term in (3.1) cannot be ig- 
nored. Results of calculation by (3.1) are in very good agreement with the accurate solu- 
tion for a single-layer cylinder up to ~0 z 30 sec, and in Fig. 4 the corresponding curve is 
almost indistinguishable from curve 3. Curve 4 in Fig. 4 relates to circumferential stresses 
in the internal surface of a steel single-layer cylinder found with calculation by (3.2). 
Apparently by means of this equation it is possible to evaluate circumferential stresses in 
the internal surface of a two-layer cylinder (line 5 in Fig. 4). In both cases use of (3.2) 
gives a relative error compared with the numerical solution of not more than 10-].5%. Esti- 
mate (3.2) for maximum thermal stresses is only valid however for the first cycle of initiat- 
ing detonation. As was obtained in [3], after five to six material treatment cycles with 
gas detonation a periodic temperature field is established in the chamber wall. Thermal 
stresses, as for the temperature field in the approximate procedure suggested in [3], are 
represented in the form of static and dynamic components. The static term in this case is 
the static distribution of thermal stresses in a long cylinder when the temperature field in 
a single-layer cylinder is 

t~ = T l ln (R2 / r ) / l n (RJr~  + To' ( 3 . 3 )  

and in a two-layer cylinder it is 

to(r) ---- T~(ln(RaRa) + k~ln(Rtr)  -}- (i  - -  k ~ ) l n ( B / r ) S _  (r - -  It~))/D + T o. (3.4) 

Here k I = 12/11; D = In(R2/R l) + klln(Rl/r0); 12 is thermal conductivity coefficient of the 
external layer; T l is the increase in internal surface temperature of the chamber wall over 
the initial temperature for a steady-state temperature regime (the value of T I is easily de- 
termined according to [3]); S_(x) is an asymmetric unit function [7]. By substituting (3.3) 
and (3.4) in the corresponding equations for thermal stresses we obtain the static term for 
the thermal stresses field in the chamber wall. For circumferential and axial stresses 

~(r)  2(t v~) t - - l n -  ~-- 2 +  r~ / n o '  
- -  r R 2 -- r~ 

0 ~IExTI [ R 2 2% 2 ~0 ~ ] 
at  (r) --  2 (t _ v~) 1 - - 2 1 n  r R~-----r0 In . 

For a two-layer cylinder the expressions for thermal stresses in the case when the temperature 
at the external surface is prescribed are given in [6]. In view of their cumbersome nature 
they are not given here. 

An estimate of the dynamic component of the stress field is expression (3.2), where t(r, 
�9 ) is temperature field with action of thermal flow Qs [3]. For a two-layer chamber Qs(T) = 
Q(~) - T1/(hl/l I + h2/l 2) (h 2 is external layer thickness). 

Thus, in order to evaluate the thermal stress field with a steady-state temperature re- 
gime a simple approximate approach is suggested. For example, in order to evaluate circum- 
ferential thermal stresses in the internal surface of a single-layer chamber we have 

Oo (r o, T) = o~ (r) - -  a l E l t  (ro, ~)/(1 - -  vl). 

Thus, the effect of thermal protection on thermoelastic stresses in the chamber wall is 
calculated numerically. With restrained ends the maximum circumferential stresses are in the 
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chamber ends and they exceed similar stresses in the center by about a factor of i.5. In 
chambers for detonating a gas mixture the main contribution to the SSS is thermal stresses. 
Simple approximate equations are suggested in order to evaluate the maximum thermal stresses 
in the chamber walls. 
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THERMOCOUPLE MEASUREMENT OF METAL TEMPERATURE UNDER PULSED DEFORMATION 

CONDITIONS 

S. N. Ishutkin,* G. E. Kuz'min, and V. V. Pal UDC 539.89+536.53 

An increase in temperature with pulsed deformation of a metal is a parameter which is 
very sensitive to loading conditions. In fact, this situation includes the possibility of 
using local temperature sensors. In using a local sensor it is necessary to disturb the con- 
tinuity of a test specimen. As a rule, the presence within the volume of a specimen sub- 
jected to pulsed deformation of any cavities, notches, nonconductors, etc., even if it has a 
weak effect on such parameters as pressure, density, or flow rate, distorts in an uncontrolled 
way the temperature field. With characteristic times for test processes of ~i-i0 ~sec a lo- 
cal sensor of reasonable dimensions as a result of thermal conductivity does not manage to 
reach thermal equilibrium with a loaded specimen, and its temperature may differ markedly 
from the specimen temperature. Therefore, under conditions of pulsed deformation the temper- 
ature sensor should be the specimen itself. With a thermocouple method of measurement this 
sensor-specimen may be obtained by joining two metals to each other which have similar me- 
chanical but different thermoelectric characteristics so that the separation boundary for 
the metals does not introduce distortions in the temperature field. As a result of the ther- 
moelectric effect an increase in specimen temperature caused by deformation of it leads to 
development within the metal of electric currents, an electric and magnetic field, and con- 
sequently to occurrence of a difference in electric potential between different points of 
the external surface of the specimen. The distribution of the potential over the external 
surface of the specimen contains information about temperature distribution over the inter- 
face of the metals. It is not difficult to measure by experiment the difference in poten- 
tials between two fixed points on this surface. If the temperature is constant along the 
whole metal interface and if values of thermoelectric coefficients are known, then the tem- 
perature of the interface is determined from measuring the potential difference in a straight- 
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